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Tonal Consonance and Critical Bandwidth 

R. PLoxip AND •V. J. 5[. LEVELT 

lnslitute for Perception R I'O-TA'O, Soeslerberg, Netlterlamts 

Firsfly, theories are reviewed on the explanation of tonal consonance as the singular nature of tone intervals 
with frequency ratios corresponding with small integer numbers. An evaluation of these explanations in the 
light of some experimental studies supports the hypothesis, as promoted by yon Hehnholtz, that the dif- 
ference between consonant and dissonant intervals is related to beats of adjacent partials. This relation 
was studied more fully by experiments in which subjects had to judge simple-tone intervals as a function of 
test frequency and interval width. The results may be considered as a modification of yon Helmholtz's 
conception and indicate that, as a function of frequency, the transition range between consonant and dis- 
sonant intervals is related to critical bandwidth. Simple-tone intervals are evaluated as consonant for 
frequency differences exceeding this bandwith. whereas the most dissonant intervals correspond with fre- 
quency differences of about a quarter of this bandwidth. On the base of tbese results, some properties of 
consonant intervals consisting of complex tones are explained. To answer the question whether critical 
bandwidth also plays a r61e in music, the chords of two compositions (parts of a trio sonata of J. S. Bach 
and of a string quartet of A. DvoCak) were analyzed by computing interval distributions as a function o• 
frequency and number of harmonics taken into account. The results strongly suggest that, indeed, critical 
bandwidth plays an important •61e in music: for a number of harmonics representative for musical instru- 
ments, the "density" of simultaneous partials alters as a function of frequency in the same way as critical 
bandwidth does. 

INTRODUCTION 

HM'S acoustical law, as fornmlated b\- yon Helmholtz, • states th;[t the human ear is able to 
analx-ze a complex of tones into its sim•soidal colnpon- 
ents. In a previous paper,'-' one of the authors reported 
experiments on the number of distinguishable partials 
of multitone signals and showed that partials can be 
"heard out" only if their frequency separation exceeds 
critical bandwidth. 

The fact that there are certain limitations to the 

validity of Ohm's law was not overlooked by yon 
Helmholtz. In his opinion, however-, the exceptions did 
m,-mifcst themselves mailfly in the appearance of beats 
in the case of small frequency differences between two 
simultaneous tones. a On this basis, by taking into 
account also beats between adjacent harmonics, yon 
Hehnholtz was able to explain why the phenomenon of 
mnsicM consonance is rek[ted to simple frequency ratios 
of the tones involved. s Though this conception bectmm 

• H. von Helmholtz, Die Leltre you der Tollelltpfiltd.tlltg½lt als 
physiologis,lte Grzmdlage flit die Tlteorie der Musik (Verlag 
F. Vieweg & Sohn, Braunschweig, 1863), Chap. 2. 

a R. Plomp, "The Ear as a I.'requenc¾ Analyzer," J. Acoust. 
Soc. Am. 36, 1628-1636 (1964). 

s Ref. 1, Chap. 8. 
• Ref. 1, Chap. 10. 

well-known, it was criticized severel!' , in particular by 
psychologists and musicologists. 

in this paper, the relation between beats amt conson- 
ance is studied again. • To avoid misunderstandings, it 
may be useful to emphasize in advance that our sole 
concern is the question of why consonance is related to 
simple frequency' ratio. Though the concept of conson- 
;race is rather yahroe and may be different for nmsicians 
and laymen, this relationship is alwavs involved. In our 
opinion, consonance refers to the peculiar sensorial 
experience associated to isolated tone pairs with simple 
frequency ratios. We use the term lottal consottauce 
to indicate this characteristic experience. As we shall 
see, experimental results concerning "tonal consonance" 
support yon Helmholtz's conception, but they also 
necessitate a number of qualifications in which the 
concept of critical bandwidth will appear to piti)' an 
important r61e. 

a A preliminary report of it was read at the Fourth International 
Congress on Acoustics, Copenhagen, 1962: R. Plomp and W. J. 51. 
Levelt, "Musical Consonance and Critical Bandwidth," Paper 
P55 in Proceedings of the Fourth [•ter•tational Congress on Acoustics, 
1962, Copenl•agen (Organization Committee of the 4th ICA and 
Harlang & Toksvig, Copenhagen, 196,t). 
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I. HISTORICAL REVIEW 

A. Explanations of Consonance 

Tradition'ally, Py'thagoras is considered to l)e the 
discoverer of lhe fad that tones produced by a string 
vibrating in two parts with length ratios of I :1, I :2, 
2:3, and 3:4, rcspeclively, give much betlcr harmonics 
than all other ratios. These tone intervals were called 

consonances, and on lheir singnlar character the har- 
mony of Western music has been developed, especially 
after, in the •[iddle Ages, olher interwds with ratios 
of 4:5, 3:5, 5:6, and 5:8 were accepted as hnperfect 
eonsollaBcos. 

The question why consonance is related to simple 
integer ratios of string lengths has occupic(l many 
scholars through lhe ages. [n [)arl[cular, between about 
1860 and 1920 ntln]erolts studies were devoted to it. 

Nssenlk, Ilv all explanations propose(f; are based on one 
or more of the following data. 

1. Freqtte•zcy Ralio 

One of the first and most iml)orlant discoveries in 
aCO•lStiCS dUl'hlg the rise of modern science in the 161h 
and 17th centuries was lhe dependence of pitch on 
frc(lUcncy. 7 The latter implied that consonant intervals 
arc characterized hv simple frequency ratios, which 
suggested an aUraetire hypolhesis concerning lhc origin 
(•f consonance. So (;alild stated: "Agreeable corn 
sommecs a•c pairs of tones which sn'ike the car wilh ;• 
certain regularity; lhis regularity consists i• lhe fact 
that the pulses delivered by lhe two tones, in the same 
interwd of time, shall t)e commcl•snral)le in humher, s(} 
as not to keep the car drum in perpetual torment, 
[)ending in two different directions in order to yield 
to the ever (tiseordant impulses. "s Other scionlists ;[s 
Lcibniz and Eu[cr refined this explanation, cxchang• 
ing the eardrun• for the unconsci(mslv counting soul 
that would prefer intervals the more ;ts the viln'ations 
of the constituting tones concur more frc(lncntly. 
Substantially the same idea was promoted and worked 
out by Lipps • and Polak, TM whereas the recent "common 
long pattern theory" of Boomsliter an(t Creel TM also 
must be considered as belonging to lhis group. 

• In this survey: onIy explanations related to hearing theory 
are include& 

7 A thoroughgoing study of this discovery is given hy C. Trucs- 
dell, The Ralio,al Mechanics of Flexible or Elaslic Bodies, 163,¾- 
17&¾, Leonhardi Euleri Opera Omnia Set. 1X, 11, Pt. 2 (Verlag 
O. Fassli, Ztirlch, 1960), Pt. 1. 

• Galileo Galilei, Disc•rsl e dimoslrazi,•zi mittem•tichc inler;•o d 
due nuove scienze allenenll alia mecanica ed i movimenli locali 
(Elsevier, Leiden, 1638). The quotation is from the English 
translation, •'aloj;ues concerni•g Tzeo New •5'cicnccs, tranM. by 
H. Crew and A. de SaMo (McGraw-Hill Book Co., Inc., New 
York, 1963), p. 100. 

• Th. I.ipps, Psychologische Studten (Verlag G. Weiss, I Ieidel- 
berg, lg85), pp. 92-161. 

•0 A. J. Polak, [)ber Zeilei,heil i•z Bez•tg a•tf Konso;•anz, 11ar- 
mo,ie mzd Tomtlildl (Verlag Breitkopf & Hartel, I.eipzig, 1900). 

n p. Boomsliter and W. Creel, "The Long Pattern Hypothesis 
in Harmony and ficaring," J. Music Theory 5, No. 2, 2 30 (1961). 

2. Rdalio,ship c( Harmo,ics 

The discovery (17th century) that the tones of 
musical instrtm•cnts are composed of partials 2 gave rise 
to an alternative explanation of consonance. AI first, 
the mere presence of harmonics with frequency ratios 
1:2, 2:3, etc., ia every (complex) tone xvas considered 
as a sufficient proof of the consonance of these ratios 
(Ramean). In the 19th century, more-thoroughly 
formulaled implications of 1he existence of harmonks 
were presented. Both yon Helmholtz •2 and Wundfi :• 
1)ascd lhe development of melody and harmony on the 
coinciding harmonics for consorator interwds. The 
oi)inion that consonance itself originates in these coin- 
cidences was defended more recently by Ogden TM and 
Husmann, •:' though from different points of view. 
Montani •'; has tried to give this exphmation a phy- 
siologicai base. 

3. Beals belwee•t Harmo,ics 

The existen(:e of harmonics led also to a quite different 
hypothesis, in which tl•e phenomenon of consonance was 
relaled to beats and ronghness, appearing for small 
frequency difi'crences of simnltaneous tones. Though 
nearly always yon Hdmholtz is mentioned as the 

originalor of 1his conception, there are nmch older 
statements of x quite similar nature (Sorge•7). von 
Hclmholtz a staled lhat for small frequency differences 
the heats between two simple tones can be heard in- 
dividually, bul for larger distances this becomes impossi- 
hie, due lo 1heir rapid succession, and the sound obtains 
a rongh and unpleasant char•;cter. He ascertained that 
this roughness has a n•aximum for a frequency difference 
of 30-40 cps, independent of frequency, but admitted 
also that for a constant difference the roughness in- 
creases wi/h frequency. For larger frequency differences, 
roughness decreases and the sound becomes consonant 
and agreeabl% independent of frequency ratio. For 
complex tones, as produced by ransteal instruments, 
also beats between harmonics of the lower tone and 

harmonics of lhe. higher one must he taken into account. 
in this way, yon Hehnholtz explained 4 that the smaller 
that the numbers are in which the frequency ratio can 
be expressed, the more consonant the interval is. The 
octave, with a frequency ratio of 1:2, is the most con- 
sonant interval because all partials of the higher tone 
coincide with partials of the lower one and no beats are 
introduced. The next most consonant intervaI is the 

•.o Rel'. 1, Chaps. t4, 15. 
•s W. Wundt, Grtmdziige der physiologischea Psychologie (Verlag 

W. Engelmann, l.cipz[g, 1880), 2nd ed., Vol. 1, pp. 402-408; 
Vol. 2, pp. 35-48. 

n R. M. Ogden, ":\ Contribution to the Theory of Tonal Con- 
sonance," Psychoh Bull. 6, 297-303 (1909). 

•:' H. I lusmann, I:om Weseu der Konso,anz (M filler-Thiergarten- 
Verlag, Heidelberg, 1953). 

v; A. Montani, "Outline of a Physiological Theory of Musical 
Consonance," Riv. Musicale ltal. 49, 168 176 (1947). 

l• G. A. Sorge, Vorgcmach der m•tsicalischcn Compositio, (Verlag 
des Autoris, I,ohen,cin, 1745 1747), PD. 333, 334. 
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fifth (2:3), for in this case half of the partials coincides, 
whereas the other ones lie just half-way between partials 
of the lower tone. He considered it an affirmation of his 

theory that, in musical practice, thirds and sixths are 
avoided in the low-frequency range where partials are 
nearer to each other than at higher frequencies. 

4. Difference Tones 

Though yon Hehnholtz had not denied that also 
beats between difference tones may contribute to dis- 
sonance, this aspect was much more emphasized by 
Preyer, •s and in particular by Krueger? "2ø On the basis 
of detailed experiments on difference tones, '2t Krueger 
concluded that the significance of these tones was 
strongly underestimated by yon Helmholtz. As the 
total number of difference tones increases with com- 

plexity of frequency ratio, these tones could explain 
the order of consonant interwds, not only for complex 
but also for simple primary tones. More recently, 
Sandig 22 compared the character of intervals with both 
tones presented to the same ear and intervals with one 
tone presented to the left and the other one to the right 
ear, respectively, regarding the more neutral character 
of interwds in the last case as an affirmation of Krneger's 
theory. 

5. Fusion 

A quite different point of view was developed by 
Stumpf? In his opinion, neither harmonics nor differ- 
ence tones are essential to discriminate between 

consonant and dissonant intervals, whereas he re- 
jected the frequency•ratio theory its mere specula- 
tion. Stumpf called attention to the fact, investigated 
by him before 24 and confirmed by many others after 
him, that the degree of fusion ("Verschmelzung") of 
intervals depends on simple frequency folio in the same 
order as consonance does. By fusion, he meant the 
tendency of two simultaneous tones to be perceived as a 
unity. Stmnpf understood the close connection to con- 
sonance as a causal relation, fusion being the basis of 
consonance. However, many years latter, he admitted 
that this conclusion was not justified and that the rela- 
tion cannot be considered as a satisfactory explanation 
of the consonance phenomenon. 2• 

• W. Preyer, Akustlsche Unlersuchunge•z (Verlag G. t:ischer, 
Jena, 1879), pp. 44 61. 

• F. Krueger, "Differenztdne und Konsonanz," Arch. Ges. 
Psychol. 1, 205-275 (1903);2, 1-80 (1904). 

20 F. Krueger, "Die Theorie der Konzonanz," Psychol. Studfen 
1, 305-387 (1906); 2, 205-255 (1907); 4, 201 282 (1909); S, 
294-411 (1910). 

2 A summary of the results of these experiments can be found 
in R. Plomp, "Detectability Threshold for Combination Tones," 
J. Acoust. Soc. Am. 37, 1110-1123 (1965). 

221•. Sandia, "Beobachtungen an Zweikl/•ngen in getrennt- 
ohriger und beidohriger Darbietung. Ein Beltrag zur Theorie 
der Konsonanz," Neue Psychol. Studfen 14, 25-131 (1939). 

2aC. Stumpf• "Konsonanz und Dissonanz,"_Beitr. Akust. 
Musikwiss. 1, 1-108 (1898). 

2• C. Stumpf, Tonpsychologie (Verlag S. Hirze], Leipzig, 1890), 
Vol. 2, pp. I27-218. 

2a C. Stumpf, Die Sprachlaute (Verlag J. Springer, Berlin, 
1926), p. 281. 

B. Evaluation of These Explanations 

The existence of these divergent theories suggests 
that consonance is a complex phenomenon and that 
conclusive experiments on the wdue of the explanations 
mentioned are difficult to find. In contrast with the 

time before about 1920, modern books on hearing pity 
only little or no attention to consonance. 2• Is this lack 
of interest justified and must we adnfit that those in- 
vestigators are right who considered consonance as 
determined mainly or exclusively by culturaP-L2 or 
even genetic 14.• factors? 

In answering this question, we have to realize that 
our consommce perception is indeed profoundly in- 
fiuenced by the development of Western music and 
musical training. This is illustrated in two ways. 

1. The primary reason why yon Helmholtz's ex- 
planation of consonance bv beats wats rejected by many 
investigators wits that in their opinion the degree of 
consonance or dissonance of an interval is not altered 

by removing the harmonics of the component tones. A 
stndy of the observations on which this opinion was 
based shows that, without exception, musically trained 
subjects were used to judge the intervals. This w:•s not 
considered ils a difficulty but, on the contrary, as an 
essential condition to obtain relevant responses. Stumpf 
himself, perhaps the most important critic of the beat 
theory, may be presented as it good illustration. His 
large interest in the psychology of tone was due to the 
fact that originally he intended to become a nmsician. aø 
For him, judgment of a particular tone interval was 
identical to finding out its musical name, and this 
knowledge determined entirely the consonance value 
that he attached to the interval. For this reason, he 
considered intervals like 8:15 and 7:10 as dissonants, 
also in cases without audible harmonics and difference 

tones. Appltrently, this approach was so self-evident to 
him (and many others) that he did not realize that his 
resttits had nothing to do with the origin of consonance 
and dissonance but must be considered only as at demon- 
stration of the success of his musical education and 

training. The large influence of training wats demon- 
strated by an investigation by Moran and Pratt :• in 

• This may he illustrated hy S.S. Stevens and H. Davis, 
Hearing (John Wiley & Sons, Inc., New York, 1938). Though 
13. G. Boring in his "Perspectivc" at the beginning of the book 
refers to the work of H. yon Hehnholtz and closes with the words, 
"Certainly we are ready now for a new Lehre yon den Tonempfin- 
dungert to orient us among the complexities of the new physiologi- 
cal acoustics which is now so successfully answering questions 
which Helmho]tz posed," this book spends only one paragraph to 
the phenomenon of consonance, merely mentioning yon Helm- 
holtz's expanation without comments. 

27 N. Cazden, "Musical Consonance and Dissonance: A Cultural 
Criterion," J. Aesthet. 4, 3-11 (1945). 

2s R. W. Lundin, "Toward a Cultural Theory of Consonance," 
J. Psychol. 23, 45 49 (1947). 

2u H. T. Moore, "The Genetic Aspects of Consonance and 
Dissonance," Psychol. Monogr. 17, No. 2, 1-68 (1914). 

• C. Stumpf, To•psychologie (Verlag S. Hirzel, Leipzig, 1883), 
Vol. 1, Preface. 

a• H. Moran and C. C. Pratt• "Variability of Judgments on 
Musical Intervals," J. Exptl. Psychol. 9, 492-500 (1926). 
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which 3 ol)servcrs, who were able Io recognize any given 
lntlsical interval, had to adjust the frequency of nile 
Ihe Ioncs of each of a series of inlcrvals lo Ihe corret t 

value for fiutt interval. The resuhs, obtained for simple 
ioncs, indicaled lhat for each of the subjects the average 
settings were more in agreement with the interval widths 
afler the equally tempered scale, as used in ransic, lhan 
after the natur:d scale, given In' simple frequency 
ratios. These results show Ihat we have to mltkc a clear 

distinction between interval recognition and conson- 
ance judgmenl. The t[bilitv to recognize frequently used 
intervals does not explain why I he singuktr nalure of I he 
impressions produced by parlicul,tr intervals is rchttcd 
to simple frequency ralios of the component tones. 

2. The inflnence of nutsic on lhe jndgment of intervals 
can be shown in another way also. Originally, only 1:1, 
1:2, 2:3, and 3:4 were considered as con.•mlmt and 
agrce•d•le intervals. Nowadays, lhe situalion is much 
more complex. Asking a jury of musicians and psy- 
chologists to ascertain the nmk order of consonance of 
all intervals within the octave, M ahnbel'g• '• obtained the 
order 1:2, 2:3, 3:5, 3:4 and 4:5, 5:8, 5:6, 5:7, 5:q, 
8:9, 8:15, and 15:16. (;uernsev *½ has conlirmcd lhc 
well-known facl that musicians make a clcttr distinc- 

tinn bet\\con pleasantness and consonance. In this 
sludy, it was fmmd that for a group of mnsicians lhc 
ranking of intervals for consommee was about 1 he s;une 
,is that obtained by Maimberg, but lhe ordering in terms 
of pleasantness was qnite different: sixths (3:5, 5:8), 
thirds (4:5, 5:6), fourth (3:4), and minor seventh (S :9) 
did share the highest rank. For naive subjects, bnwcvcr, 
consommce and pleasantness are much more similar 
concepts, as was demonstrated by the authors a4 in an 
experiment in which 10 subjects had •o judge a large 
number of intervals on 10 different semantic scales. A 

high correlation between consommce and pleasanlness 
scores was frorod. In fact "consonance" appeared to be 
used as an evahmtion category. For these subjects, 
the sixths, thirds, and fourth were the most pleasant 
intervals, bnt their evalualion of the octave and lifth 
was nmch higher than for musicians, as wt•s also the 
case in (;uernscv's experiments. :*'* l"rom these rcsuhs, 
we may conchMe t hat t he original concept of consonance 
has been split up in two opinions: one hem by nmsicians, 
the other by naive subjects. This devclopnxent must be 
seen as a consequence of the fact that, in the course of 
history, preference did shift from intervals given by 1:2, 
2:3, and 3:4 to more-complex frequency ratios. For 
laymen, the me:ming of the term cottsonance followed 
lhis shift. Musicians, however, did maintain the tradi- 
tional rank order of intervals in terms of consonance, 

a-' C. F. Maimberg, "The Perceptiou of Consonance and Dis- 
sonance," Psychol. Monogr. 25, Xo. 2, 93-133 (1917-1918). 

• M. Guernsey, "The Rfle of Consonance and Dissonance in 
Music," Am. J. Psychol. 40, 173-204 0928). 

u j.p. van de Geer, W. J. M. Levelt, and R. Plomp, "The 
Connotation of MusicM Consonance," Acta Psychol. 20, 308-319 
(1962). 

ch;craclcl-izcd by smoothness and Ulfifornfity, indepcnd- 
(.'lit froIll cv•tlualiOl]. 

After these two digressions on the relation of con- 
soilaliCe to music Ihc {[tlcSl[r)ll can bc asked as lo how 
To evahtale the v•u-ious c(msonance explanations men- 
lioned in Sec. I A. in onr allcrept to answer this ques- 
tion, we are interested in perception of consonance not 
so nmch as a produel of ransteal erincation and lraining 
but as a basis of it. in our opinion, there exists a typical 
sensorial phenomenon that is related to simple integer 
frequency ratios and that is of a generM nature, holtling 
also fnr subjects without :my experience in musical 
harmony. This particular sensorial phenomenon, which 
we call "tonal consonance," may be considered to be 
basic to the relation between the concept of conson- 
ance, as hem by nmsicians aml laymen, and simple 
frequency ratios. 

With lhese restrictions in mind, the resulls of only 
a few experiments are reitvain to decide upon the 
ruerils of the five different t3pcs of consommce ex- 
planation. The most pertinent study is that by Guthrie 
;red Morrill :•:' on the judgment of inte,'vals composed 
of two simple tones. In this experiment, abmtt 380 
subjects were presented with 44 different intervals, 
with frequency ratios from 1:1 to beyoral 2:3, and the 
subjects were asked to judge lhc interwd as consonant 
or dissonant, and as pleasant or unpleasant, respectively. 
In Fig. 1, the average results are reproduced. The fact 
lhal Ihc Iwo cur\-cs are quile similar is in agreement 
with lhc conclnsion, mentioned above, that for the 
naive subject the notions consonance and pleasantness 
are neath' Mentic;fl. 

In ll•is conncclion, anolhcr investigation, in which 
only pleasamncss w,[s examined, is also relevant. In 
that study, ca,'ried ont I,v Kaestnery; pairs of interriffs 

15:16 6 õ 5 

0 50 

5.7 ;/:3 

i 

lOO 150 

I 

200 

l.'m. 1. I'crcentagc o[ subjects who judged simple tone intervals 
as cunsonant (solid curve} and picasant (ditched curve), •c 
spectively, plotted as a function of frequency difference between 
the tones. For all intervals the frequency o[ the lower lone xxas 
395 cps. ['After Guthrie and Morrill?• 

:• E. R. Guthrie and H. Morrill, "The Fusion of Non-Musical 
Intervals," Am. J. Psychol. 40, 624-625 (1928). 

a•G. Kaestncr, "Untersuchungen fiber den GefCthlseindruck 
unanalysierter Zweikllinge," I)sychol..qiudlen 4. 473-.504 (1909). 
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15:16 89 5'64.5 34 5-7 2:3 58 35 5.9 815 1.2 

............... ,T,,. ' 
0 50 1• 150 200 250 300 

frequency dmtterence mn cOS 

lq•. 2. Yercent•ge o[ c•ses in which • tone intesval was judge• 
•s more pleasant th•n the other ones, plotted •s ß •unction o• 
•reqoency difference between the tones. •hc solid curve rapresents 
t•e d•t• los sim]fie• the d•she• crave [o• complex tones. For 
inte•vMs, the frequency of the lower tone w•s 320 cps. 
•estne• ?] 

were presented successively to observers who were 
asked to indicate which one was more pleasant. These 
experiments were performed for intervals composed of 
either simple or complex tones. In both cases, about 30 
intervals within the octave were involved and all pairs 
of intervals were judged. In Fig. 2, the mean values of 
the most important resttits are presented. The simple- 
tone curve agrees with the cnrves of Fig. 1, whereas the 
other curve, based on complex tones, shows marked 
peaks for simple frequency ratios. 

These experiments are very useful to eva]tlate the 
different explanations of consonance. As we see, for 
intervals composed of simple toues, simple freqnency 
ratios did not result in singnhu' points of lhe cnrves. 
On the contnu'y, the curves suggest that fi'equency 
distance rather than frequency ratio is the decisive 
parameter. For increasing frequency' difference, the 
curves show a marked ndnimum, followed by a broad 
maxinmm. 

The only explanation supported by the results of 
these two experiments is the theor)' pronmted by yon 
Helmhohz, after which the dissonance of an interval 
is primarily due to rapid beats between the component 
tones. [n both investigations, the minimum of the 
curves corresponds very well with a frequency differ- 
ence of 30-40 cps, in accordance with yon Helmholtz's 
statement of maximum dissonance. The fact that the 

curve of Fig. 2 based on complex tones shows marked 
peaks for the intervals corresponding with simple fre- 
quency ratios is in agreetnent with this explanation. 

On the other hand, the experhnents do not support 
the other explanations mentioned in Sec. I-A. Agaiust 
these views, the following objections can be raised: 

1. The hy-pothesis that, anywise, freqnency ratio is 
perceived is contradictory to the finding that the simple- 
tone c•ves oJ Figs._l and 2 do not have peaks for simple 
ratios. All evidence in this direction must be due to 
intervM recognition as a result of nmsical training, the 

intportance of which is demonstrated by the experi- 
ments of Moran and Pratt, mentioned above. 

2. Insofar as consonance explanations based on re- 
lationships of harmonics imply that the presence of 
harmouics in every complex tone results in a "condi- 
tioning" for simpl• frequency ratios, the objections of 
(1) agaiu do apply. In another view on the inflnence 
of harmonics, consouance is considered to be related to 
the number of coinciding harmonics during actrod 
sounding of two complex tones simultaneously. How- 
ever, it is not clear how this coincidence may be relevant 
to consomtnce other than by the absence of beats or 

difference tones, because every connllOll partial may be 
regarded as belonging to only one of the complex tones. 

3. The influence of difference tones on consonance 

perception also is not very probable in view of the data 
reproduced in Figs. I and 2. Moreover, experiments of 
one of the authors on the andibilitv of combimttion 
tones "t showed that the nonlinear distortion of the 

hearing organ is so small that it cannot be regarded as 
a constitutive base for consonance. 

4. The fact that the rank order of consorator intervals 

is correlated with their degree of fusion cannot be 
considered as a satisfactory explanation, as Stumpf 2• 
himself admitted. This does not mean that the relation 

has no relevance. However, in this paper it is left out 
of consideration. 

From this survey-, we may conchide that it is of inter- 
est to investigate more thoroughly the hypothesis that 
tonal consonance, the peculiar character of intervals 
composed of cmnplex tones with simple frequency 
ratios, is due to the absence of rapid beats between 
harmonics of the component tones. 

II. EXPERIMENTS 

Iu the investigation by Guthrie and Morrill, tone 
intervals were iuvotYed only with a lower tone of 
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Flo. 3. Consonance rating scores of simple-tone intervals with a 
mean frequency of 125 cps as a function of frequency difference 
between the tones. The solid curve corresponds with the median, 
the dashed curves with the lower and upper quartiles of the 
scores (11 subjects). 
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305 cps. Kaestner used 256 and 320 cps for this fre- 
quency. So these studies do not give information ou 
lhc degree to x• hich evaluation of intervals, comi)osed of 
simple hines, depends on frequency. i:or a boiler in- 
sight in the relation between consonance and heals, the 
answer to lhis queslion is of great interest, aud for lhis 
reltson the aulhors t>lanncd the following experimenls. 

A. Method and Procedure 

In the experiments, observers had to judge tone 
intcrvals as a function of two parameters: sitnation of 
the interval in the frequency range aml frequency 
difference between the componenl tones. As a measnre 
of the lirst parameter, the geometric ntcan of the fre- 
quencies of the. two tones wits taken. In order to separ- 
ate the influence of the parameters as nmch as possible, 
this mean frequency has advanlages to frequency of the 
lower tone of the intervals which was used in earlier 

studies. For the same reason, different groups of ob- 
servers were used for each of lhe mean frequencies 
involved. 

The subjects judged each tone interwtl on a 7-point 
scale, "consonant dissonant," I corresponding with 
most dissouaut, 7 wilh most consonant. Some subject-, 
asked for the meaning of co.so.a.l. In that case, the 
experimenter circumscribed the term by beatttiy'ul and 
e-upho. ious. This procedure is justified because, its was 
ascertained earlier, a cottso.a.l, beautiful, and eupho.ious 
are highly correlated for naive snbjects. In fact, they 
represent one dimension in semantic space: cvahuttion. 

The experimental setup was very sintple. The tones 
were produced by 2 sine wave oscillators and repro- 
duced by a loudspeaker in front of the observer. The 
sound pressure near the subject's ear was kept al a 
constant level of abont 65 alii re 2.10 -4 dyn, cm'-'. The 
subjects were tester[ individualh' in a soundproof room 
with sound-absorbing walls. The experimenlcr was 
seated in another roont and presented each inlcrval 
tinring about 4 sec. After e;uzh exposure, he had to 
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hut wi(h mean (requency •00 cps (11 •ubjec[s). 

i-cad just thc frequency of the oscillators, resulting in a 
pause of 10-20 sec between expostires. An electronic 
counter wits used to adjnst frequencics yet 3 accurately. 

The cxperitnents were carried out for 5 vaines of the 
mean frequency of the intervals: 125, 250, 500, 1000, 
and 2000 cps. Each subject was used only in one test 
sessimt, in which he had to judge 12-14 different 
interval-width x'alncs around one of tbe•c mean 

frequencies. To avoid the influence of interval recogni- 
lion, the widths of these intervals were chosen on base 
of frequency differcnce, not on frequency ratio. 

The following procednre was used. First, the subject 
read writlen instrttctions concerning the purpose of the 
test and the way in which he had to record his responses 
on a sheet with horizontal lines, each prox4ded with 7 
short vertical thmhes. After that, a preliminary series 
of 1(} different interwds, chosen at random out of the 
interval widths nsed in the experiment, was presented 
in order to make the subject familiar to the differences 
between the sitmilli and to warrant an adequate use 
of thc 7-poinl scale. Then, 5 series of 12-14 inlerwds 
were presented (12 for 125 cps, 14 for the other mean 
frequencies). Each of these series contained the same 
interval widths but in a different (random) order. Al- 
ways the first interval of a series was different from the 

lltst one of lhe preceding series. 
The test subjects were young mMe adults of about 20 

years of age and with secondary-school training. For 
the mcan frequencies 125, 250, 500, 1000, and 2000 cps, 
the nulnber of subjects was 19, 22, 18, 11, and 18, 
rcspcclively. 

B. Results 

To exclude ½l:da of subjects who were not able to 
give consistent responses, for each of them test retest 
reliability was dcterntined by calculating the torrehi- 
lton coehfcient between thc scores of the first and the 

hist of the 5 series of interval widths presented to the 
subjects. Only the data of those subjects were main- 
rained who ired a correlation coefficient above 11.5. 
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Fro. 6. As Fig. 3, but with mean frequency l•10 cps (10 subjects). 

Their average scores of the 5 series were used for fitrther 
calculations. In this way, the nun•ber of accepted 
subjects was reduced to ll, 10, 11, 10, and 8, respec- 
tively, for the mean frequencies 125 2000 cps. 

In Fi•..377, the 'experimental results for the dif- 
ferent mean frequencies are reproduced as a function 
of interval width. In each of these graphs, the solid line 
connects points representing the median; the other 
lines correspond_with the lower and upper quartiles 
of the scores. 

C. Discussion 

The curves of Figs. 3-7 have the sartre general course 
as of Figs. 1 and 2 (solid line). For small frequency 
differences, they show a minimum, followed, for larger 
differences, by a more or less broad maximum. To 
characterize the curves, two points can be used: the 
mininmm and the frequency difference for which the 
maximum is reached. We pay' some attention to each 
of them. 

In Fig. 8, the interval widths corresponding with the 
minima of the curves of Figs. 3 7 are plotted as a 
function of mean frequency. Also, for the curves of 
Guthrie and Morrill and of Kaestner, the miniran are 
marked. 

The only other data found in literature with which 
our results can be compared are from Cross and Good 
win, a• who published some data concerning the "point 
at which the harshness of the dissonance prodriced by 
the tones of two resonators reaches a maximum." 

These points, investigated for onh' one subject, are 
reproduced in Fig. 8. 

In comparing and evaluating these data, we haxre to 
realize that the miniran in the consonance curves are 

rather broad, so that the points are not very precise. 
Nevertheless, it will be clear that the experiment;d 

a? Ch. R. Cross and H. M. Goodwin, "Some Considerations 
regarding Helmholtz's Theory of Consonance," Proc. Am. Acad. 
Arts Sd. New Sec. 19, 1-12 (1893). 

rc.•nlts do not confirm yon Hehnholtz's opinion that the 
frequency difference for maximum roughness is in- 
dependent of frequeIr%'. Though the value of 30-40 
cps, given by him, agrees with the data points in the 
frequency range between 500 and 10(10 cps, the general 
trend of the data indicates that, for increasing fre- 
quency, also the imerval width for maximum rough- 
ness or dissonance increases. The solid curve corres- 

ponds with 256,70 of the critical bandwidth, adopted from 
a paper of Zwicker. Flottorp, and Stevens. as This curve 
is based on the results of several investigations on 
masking, loudness, and the cat's sensitivity to phase 
differences. The graph suggests that, instead of yon 
Hehnhohz's h3l)othesis of a constant frequency- dif- 
ference, a frequency difference proportional to critical 
bandwidth gives abctter fit to the data. 

Simihtr things can be said about the minimum fre- 
quency difference of intervals that are judged as con- 
sonant. In Fig. 9, the vertical dashes represent the 
interval widths for which the curves of Figs. 1-7 reach 
their maximum. As, for some curves, this value cannot 
be deternfined exactly, dashes instead of points are 
plotted. In the same graph, relevant data of some other 
sludics are reproduced. The open points correspond 
with the limit of audible beats as determined by Cross 

and Goodwin '•;; the crosses correspond with the smallest 
consonant intervals after an investigation by Mayer. a• 
A clear relationship exists between these data, justify'- 
ing the conclusion that consommce is closely related to 
the absence of (rapid) beats, as in yon Helmholtz's 
theory. But, again, this consonance maximum is not 
independent of the mean frequency of the interwd. The 
curve of the critical bandwidth gives a better fit, 
especially for the authors' own data. 

In conchtsion, yon Helnnholtz's theory, stating that 
the degree of dissonance is determined by the roughness 

IO • õ I0 • 2 

frequency d •rence n cps • 

Fro. 7. As Fig. 3, but • ith mean frequency 2000 cps (8 subjects). 

as E. Zwicker, G. Flottorp, and S.S. Stevens, "Critical Band 
Width in Loudness Summation," J. Acoust. Soc. Am. 29, 548-557 
(1951). 

• A.M. Mayer, "Researches in Acoustics. No. Lx•," Phil. 
Mag. 5th Ser. 37, 259-288 (1894). 
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of rapid beats, lnav be maintained. However, a modilica- 
tion has to hc made in the sense theft mininml aml 

maximal roughness of intervals are not independent of 
the mean frequency of the interval. A better hypothesis 
seems to be that they are related lo critical Imndwidth, 
wi•h the ntle •,[ thumb that maximal tonal dissonance 

2.•/o of the critical is produced by intervals subtending 
bandwidlh, and lhat maximal tonal consonunce 
reached for interval widths of 100•, of lhc crilical 
bandwidth. In all experiments in which critical bands 
have been investigated, the width of this band repre- 
sents the frequency-difference limit over which simple 
tones cooperale. So it is not surprising that roughness 
appears only for t•mes at a frequent) distance not 
exceeding o/itical bandwidth. 

III. CONSONANCE FOR COMPLEX- 
TONE INTERVALS 

In this secti,m, the data of lhe preceding exI)eriments 
are nsed to explain not only why, for complex tones, 
consommce is related to simple frequency ratio, but 
also to illustrale some other well-known properties of 
consonant inlervals. 

As Fi•s. 3 7 show, the curves, plolled on a iogarith• 
mic frcqucnc)' scale, have approximalely idenlical 
shapes. This means lhal lhev all can be subsliluled 
the same curve in which consonance score is represented 
as a function of the interval widlh with critical band- 

width as a unit. This stundard curve is reproduced in 
Fig. 10. I1 has been derived by philling in one graph lhe 
data points for each of the mean frequencies as a firee- 
tlon of critical bandwidth and drawing the curve that 
best fits all the dala. For small frequency differences, 
lhe curve is exlemled on base of lhe curves of Figs. 1 
and 2. By a linear lransformation, the cwduation scale 

is substitnled hy a "consommce" scale, 1 corresponding 
wilh maxinmm and 0 wilh mininmm apl)reciulion. 

The curve of l:ig. 10 can he used to get some impres- 
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[ [ . Cross and Goodw,n 
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dissonance as a function o[ the mean [rcqucncy o[ the tones. The 
solid curve corresponds wilh 0.25 critical banduidth a• given by 
Zwicker, Flottorp, and Stevens? 
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l.'l(:. 9. Freqnency difference of smallest consonant interval of 
twn simple tones as a function of the mean frequency of the tones. 
The s, lid curve represents the critical bandwidth. 

si.n of how, for complex tones, consonance varies as a 
function of lhe frequency difference between the funda- 
mentals. In this case, consonance depends not only on 
lhe distance between the fundamental tones, but also 
between the harmonics. 

We assume lhat the total dissonance of such an 

inlerwd is equal to the sum of the dissonances of each 
pair of adjaccnl partials, using the right-hand scale 
of l"ig. 10 to compute the total dissonance. This assump- 
1 ion implies that these dissonance wdues may be added. 
Though these presuppositions are rather speculative, 
t hey arc not •,nreasomtble as a first approximation, and 
may he justilicd for illustrating how, for complex-tone 
intervals, consonance depends on frequency and fre- 
quency ralio. 

In this way, the curves of Figs. 11 and 12 were com- 
puted for cmnplex tones consisting of 6 harmonics. 
l"igure 11 illustrates in what way consonance varies as a 
function of interval width, whereas Fig. 12 shows how 
the consonance of some intervMs, given by simple 
frequency ratios, depends on frequency. 

The curves of Figs. 11 and 12 may be considered as 
an illustration of the following properties of tone 
inlervals. 

1. With simple frequency ratios of the component 
tones, singular points of the curve of Fig. 11 corres- 
pond. As we restricted lhe nnmber of harmonics to 6, 
only i)eaks for frequency ratios containing the numbers 
l-6 cmfid appear. If also the 7th and 8th harmonics 
were included, the curve would have shown extra peaks 
for 4:7, 5:7, 6:7, 5:8, and 7:8. In this w•kx- , it m%' be 
clear Ihal, for complex tones, as produced by musical 
instruments, consonance is related to simple frequency 
ratios. 

2..More-simple frequency ratios are represented by 
sharper peaks. This means that octave and fifth are 
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•o. 10. StAndard curve •presenting consouance o[ two simple 
tones As • fu•ctbn of [•equencv difference w[fi critical handwidth 
as a unit. The cu•e is ba•d on the data points of Figs. 1-7. 
The con•nance and dis•nance scales are arbitrary. 

much more sensitive to a deviation of their right fre- 
quency ratio than the other consonant intervals are. 
This explains why, in the eqnally tempered scale (verti- 
cal lines of Fig. 11), the impm'e thirds are much better 
tolerable than impure octaves •tnd fifths would have 
been. 

3. The rank order of consonant interwtls as given by 
Malmberg • (see Sec. I-B) agrees rather well with the 
relative heights of the peaks of Fig. 11 and the curves 
of Fig. 12. Furthermore, Fig. 12 suggests that there 
are only minor differences between the degree of con- 
sonance of the fourth and the thirds. 

4. As Fig. 12 shows, the degree of consonance is 
neath' independent of frequency over a large range. 
However, below a critical frequency, the inten-als 
become more and more dissonant, due to the bend in 
the critical-bandwidth curve at about 500 cps. The 
critical frequency is lower for more consonant intervals. 
This behavior reflects the musical practice to avoid 
thirds at low frequencies and to use mostly octaves or 
wider intervals. 

5. Apart from the range below 100 cps, the disson- 
ance value is 0 for the octave (Fig. 12). This means 
lhat, for np to 6 harmonics, all frequency differences 
between adjacent harmonics exceed critical band- 
width. It appears that this does not apply for tones 
with higher partials. This fact explains why complex 
tones with strong higher harmonics sound nmch sharper 
than tones consisting of only 6 harmonics. It is interest- 
ing that this fact was already emphasized by yon 
Helmholtz? 

IV. STATISTICAL ANALYSIS OF CHORDS IN MUSIC 

The preceding section showed that sereral properties 
of tone intervals can be explained by interference of 
partials. This interference occurs, as the experi•nents 
indicated, for frequency differences smaller than critical 
bandwidth. Apparently, this bandwidth plays an 
portant r61e in the sensation of simultaneous tones. 

,0 Ref. 1, Chap. 5. 

This conclusion raises the interesting question 
whether in music, too, we may find properties related 
to critical bandwidth. Some preliminn D' investigations, 
in which chords of musical compositions were analyzed, • 
were very promising, and for that reason a more 
detailed study was made. 

The basic idea tmderlying these analyses was the 
following. During the process of composing, the com- 
poser at every moment makes a selection of tones from 
the total set of tones "available" to him. One of the 

criteria for selection is lhat the composer wants to 
create a sequence of chords, in accordance with his 
nmsical intentio•m, that at the same time realizes a 
succession that varies in consonance and dissonance. 

Leaving the time dimension out of consideration, a 
"vertical" dimension remains: the composition of the 
chord out of simultaneously present tones. We may get 
some insight into this vertical dimension by investigat- 
ing the density distribution of simultaneous tones, 
partials included, as a function of frequency. This is a 
statistical approach; it will not give information about 
occurrance of specific chords b•tt only about the fre 
quency of occurring of different tone interwds. 

An illustration may serve to explain how the analysis 
was done. Suppose that we are interested in the density 
distribution o[ intervals with c'-'= 523.3 cps its the lower 
tone. First, we restrict ozselves to the case that funda- 
mental tones onh- are taken into account. In this case, 
we take out of a musical composition all chords that 
contain c': and a higher tone simultaneously. We then de- 
termine the fraction of time, relative to the total duration 
of these chords, during which the neatrest higher tone is 
separated from c •- by a distance of 1 semitone 
or dS), 2 semitones (d-l, etc. In Fig. 13, an example of 
such a density distribution is given (solid line). The 
cumulative distribution, derived from the density 
distribution by taking the fraction of time the interval 

[ I 1:2 I:$ 2:3 
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Fid. II. Illustration of the way in x•'hich consonance of an 
interval with a lower complex tone of 250 cps and a variable 
higher one depends on the frequency of this tone. Both complex 
tones consist of 6 harmonics. The vertical lines represent interval 
width after the equally tempered scale. 



TONAL CONSONANCE AND CRITICAL BANDWIDTH 557 

TAnLE [. Fundamental tones containing c-* as the 1st, 2nd, 
3rd..-., 10th barmmfic, respectively. In the last colmnn, the 
deviations of the frequency of these harmonics from the frequency 
of c 2 are indicated (equally tempered scale). 

Fundamental Frequency No. of 
tone (cps) harmonic 

Frequency of l)cviation 
harmonic from 

(cps) (cps) 
c*- 523.252 I 523.25 0 
c t 261.626 2 523.25 0 
f 174.614 3 523.84 50.59 
c 130.813 4 523.25 0 
G• 103.826 5 519.13 --4.12 
F 87.307 6 523.84 +0.59 
D 73.416 7 513.91 --9.34 
C 65.44)6 8 523.25 0 
-\•-• 58.270 9 524.43 +1.18 
G•,• 51.913 10 519.13 --4.12 

does not exceed 1 semitone, 2 Selnilones, etc., is also 
given (dols :red dashes). 

The procedure can be repeated by including 2rid 
harmonics, 2ml and 3rd harmonics, etc. In general, in 
the case of n harmonics, we take chords that include c •- 
either as a fnndamental tone or as nne of the first u 
harmonics of a lower tone. The density distribution is 
lhen calcnlated for distances between c 2 and the nearest 

higher tone, which may also be either a fundamenhd 
lone or one of the first n harmonics of a lower tone. hx 

Fig. 13, distributions for n= 6 are plotted. It is found, 
as was to be expected, that the 50% point of the cunmla- 
live distribution for n = 6 gives a smaller interval value 
lhan the corresponding point in the cunmlative dis- 
tribution for n = 1. 

Table I gives wtlues of frequencies of tones that 
contain c -ø as their nth harmonic, with n= 1, 2, ..., Ill. 
The Table also gives frequencies of the harmonics of 
these tones on the basis of the equally tempered scale. 
As is well-known, these frequencies do deviate stonewhat 
from the frequency of c x in some cases. These deviations 
are left out of consideration here. 

To facilitate compution of interwd distributions for 
different wdues of the basic frequency and different 
numbers of harmonics, special equipment has been 
developed. It consists of (11 an apparatus to trans- 

I:IG. 12. Illustration of the way in which consonance of some 
intervals with simple frequency ratios depends on Ihc frequency 
of the lower tone. Buth complex tones consist of 6 harmonics. 
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Fro. 13. Example of interval distributinns at c-ø=523.3 cps 
for n = 1 (solid curve) and n=6 (dashed curve). The other curves 
represent the cumulative distributions for n= 1 (dots and dashes) 
and n=6 (dots). The interval distributions were computed from 
the last movemcnl of J. S. Bach's Trio Sonata for Organ .Vo. 3 in c 
minor. 

nutte the notes and duration of chords, "played" 
successively on a keyboard, in punch code, using an &bit 
tape, an([ (2) an apparatns to read out the tape and to 
compute the interval distribution with both basic 
frequency and n adjustable. 

In this way, 2 nmsical compositions were analyzed, 
the last movement of J. S. Bach's Trio Sonata for Organ 
No. 3 in c minor, and the 3rd movement (Romanze) of 
A. I)vo•.k's Siring Quartet Op. 51 in Ev major. In both 
cases, interval distributions were computed for C = 65.4 
cps, G=98.0 cps, c= 130.8 cps, g=196 cps, c•=261.6 
cps, gt=392 cps, etc., and taking into account n har- 
monics with n= 1, 2• 3, ..., 10. For each of these distri- 
butions the Jutorval width was calcnlated (first in 
semitones mid from these values in cycles,/second) 
which is not exceeded durin• 95 c/ - o• ._ -' ,o, •0•o, and 75% of 
time, respectively. 

In Figs. 14 and 15, lhe resttits are reprodnced as ,• 
function of frequency, with n as a parameter (solid 
lines). As the data for n= 10 were quite similar to the 
data for n=9, the former case has been left mtt. The 
dashed lines represent the critical bandwidth after 
Zwicker, Flottorp and Stevens, as plotted as a function of 
lhe lower cutoff frequency, and a quarter of this band- 
width, corresponding with maximum dissonance (Fig. 
101. For each freqnency, the total duration of time of all 
chords on which the concerning interval distribution was 
based is indicated, using the duration of the shortest 
note occurring in the composition as a time unit. 

To grasp the significance of the curves, it may be 
helpful to trace their shift as a function of the minther 
of harmonics. This is done on the basis of the graphs of 
Fig. 14. For the case that only the hmdamental tone 
was taken inlo accounl, most of the interwds exceed 
the critical bandwidlh, in particular for the lower 
frequencies [Fig. 14(a)•. It will be clear lb}it, as a func- 
tion of fi'equency-, all intervals with lhe •rme frequency 
ratio between the component tones correspond with a 
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F•o. 14. Results of a statistical analysis of the chords of the last movement of J. S. Bach's Trio Sonata h;r Organ Yo. 3 in c minor with n 
(= number of harmonics taken into account) as a parameter. The solid curves represent the intervai width in cps between adjacent 
partials, plotted as a function of frequency, which is not exceeded in 25•, 50%, and 75% of time, respectively, computed from curves 
as represented in Fig. 13. The dotted curves correspond with critical bandwidth and a quarter of this bandwidth. 

straight line with a positive slope of 45 ø. As for octave 
intervals, the frequency difference is equM to the fie- 
qtmncy of the lower tone; xve see that for the loxver 
freqnencies nearix, all intervals of Fig. 14(a) exceed 
the octave. This implies that, including also the 2rid 
harmonic, these interwds reduce to octaves, resulting 
in a line with a slope of 45 ø through the point A f= 100 
cps for f= 100 cps f-Fig. 14(b)•. Above c= 130.8 cps, 
however, most interwtls are smaller than the octave. 
Because n=2 means that all fundamental tones are 
•tccompanied by their octaves, the curves of Fig. 14(b) 
extend to a corresponding higher frequency. The in- 
clusion of the 3rd harmonic manifests itself in the 
following ways: (1) the points corresponding with the 

lower frequencies do not shift because the frequencies of 
the new to•xes all are above that range; (2) in the middle 
range, the lens•tx' of tones increases, reshiring in a 
shift of the curves to smaller frequency differences; (3) 
the curves are extended to a 50% higher frequency, 
compared with the curves for n= 2; (4) as most of the 
intervals for the highest frequencies will be fifths, cor- 
responding with the frequency distance between the 2nd 
and 3rd h•rmonics of the highest fundamental tones of 
the composition, this interwd will determine the course 
of the curves at the higher frequencies. 

Every time when a further harmonic is added, a 
repetiti'mx of this process occurs, with the result that 
for increasing u (1) the frequency limit below which 



TONAL CONSONANCE ANI) CRITICAl. BANDWIDTH 5.59 

! 
! 

! 

! 
! 

,/ -' 
- • .•' (a) n=l 

10 • 

$ 

2 

10 • 

5 

2 

i0 • 

5 ß I0 • 2 5 10' •= 2 3 10 • 2 5 10' 
frequency in cps --- 

[:m. 15. Results of a statistical analysis of the chords of the 3rd movement (Romanzc) of l)v•,•.k's SlJ'i, d Quartet Op. 51 in E) major. 
The curves have the .same meaning as in Fig. 14. 

no new tones are added shifts to higher frequencies; :rs 
we saw for, = 2,this limit is about c= 130.8 cps, whereas 
for n=9 this limit is aboul c•=523.5 cps; (2) in the 
frequency range above this Illnit, lhc curves will shift 
to smaller frequency differences; (3) a furlher extension 
of the curves to higher frequencies will take place; (4) 
for the highest frequencies, the course of the cnrvcs 
will mainly be determined by the interval (n- 1) :tt. 

The cnrves of Fi•. 15 s!•ow •l•e game Irend• :is :t 
function of the number of harmonics. However, in 
this case, the intcrwtl widths belwcen lhe ftmdamenhd 
tones are mtteh smaller than in the former case. ()nlv 

for Ct= 65.4 cps do the inlervals exceed the octave, as a 
comparison of the graphs (a) and (b) shows. As a con- 
sequence of this fact, also for n> 1 Ihe curves of Fig. 15 

correspond with smaller intervals than_-the-'curves-of 
Fig. 14. 

After these more genel-al remarks, we may compare 
the position of the curves with the critical-bandwidth 
curves. As we see, for increasing ,, the shape of the 
interval curves agrees more and more with the dashed 
curves. In bmh I"igures, the agreement is greatest for 
at)out 8 harmonics. 

These results strongly snggest that critical bandwidth 
plays an important r61e in music. The signilicance of 
Ihis fact ClUl be inlerpreted in •he following way. As 
we saw in Sec. II, simple-tone inlervals with a frequency 
difi'erence exceeding crilical bandwidth are judged as 
consonant and do not differentiate in this respeel. ()n 
the other hand, for smaller frequency differences, con- 
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sonartec evaluation strongly depends on interval width, 
with a minimum for about a quarter of critical band- 
width. So it is not surprising that just this range is 
used for "modulation" between more-consonant and 

more-dissonant chords. However, it is surprising indeed 
that, for a number of harmonics representative of 
musicM instruments, this is achieved in about the same 
measure over a wide frequency range. 

We have to realize that this equally deep "penetra~ 
tion" in the borderland between pronounced consonant 
and dissommt simple-tone intervals, represented by the 
upper and lower dashed curves in the graphs, respec- 
tively, is a result of many factors. As the most impor- 
tant ones we may consider: 

1.--the fact that in the tone scale as developed in 
Western music, a lot of interwds agree with simple 
frequent3.' ratios, so that harmonics of the different 
component tones of a chord may coincide; otherwise, 
the shape of the solid curves of Figs. 14 and 15 would 
have been more fiat, due to more dissonant chords. 

2.--the fact that the frequencies of the partials of 
the tones are multiples of the frequency of the funda~ 
mental tone. A deviation from this rule would have the 

same effect as mentioned under (15. This may be re- 
garded as one of the reasons (there are more!) why 
instruments with inhm'monic partials are not used to 
produce musical chords. 

&--the way in which, as a function of frequency, the 
composer selects his intervMs. We saw above that in 
Bach's composition the frequency ratio between 
fundamental tones is larger at lower than at higher 
frequencies. As a comparison with Fig. 12 shows, in 
this way very dissonant chords are avoided. Though 
to a smaller degree, this is also the case in Dvo•&k's 
string quartet [intervals with the same frequency ratio 
between the component tones correspond with a 
straight line with a slope of 45 ø in Fig. 15(a)]. 

4.--the number of notes in a chord. It is clear that, 
generally, for increasing number the mean distance 
between adjacent partials will decrease. The fact that 
the solid curves of Fig. 15 correspond with smaller 
frequency differences than the curves of Fig. 14 
be mainly due to this factor and the 3rd one. 

5.--the frequency lintits between which the funda- 
mental tones are chosen and their distribution within 

this range. So a multiplication of all frequencies by 
certain factor shifts all curves both horizontall 5' and 
vertically to the same degree. As we see, this would 

influence their relation to the dashed curves much more 

for lower than for higher frequencies. 
&--the nmnber of harmonics produced by the instru- 

ments on which the composition is performed. Only the 
intluence of this factor has been studied here, showing 
that the frequency range over which a typical harmonic 
modifies the interwd distributions shifts to higher fre- 
quencies for increasing n. This implies that the number 
of harmonics is not very critical. Most musical instru- 
ments produce strong harmonics up to a number that 
may vary from about 6 to 10, though in the last case the 
tone has a sharp qualit)- and is more suited for solo 
parts. 

The mere enumeration of these factors does not give 
us much information about their relative importance. 
So it would be of interest to know more about the degree 
to which each factor determines the position of the 
horizontal and the sloping parts of the curves. Moreover, 
we should like to have more insight in the way in which 
their position depends on musical style and on the 
instruments for which the composition is written. 
Further investigations are in preparation to answer 
these questions. 

V. CONCLUSIONS 

Both the experimentM results on the evaluation of 
simple-tone intervals and on the statistical analysis of 
chords in musical compositions support the explanation, 
promoted by yon Helmholtz, that the singularity of 
intervals with frequency ratios determined by small 
integer numbers is due to interference of adjacent par- 
tials finding expression in a roughness sensation. The 
investigations indicate that, as a function of frequency, 
the transition range between consonant and dissonant 
simple-tone intervals is related to critical bandwidth. 
These intervals are evaluated as consonant for fre- 

queucy differences exceeding critical bandwidth, whereas 
the most dissonant intervals correspond with frequency 
differences of about a quarter of this bandwidth. 
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